The future we see throug

# IS MACHINE

industries

IS MACHINE PARALLEL OPENING CLOSING ADV 1050 ADV 8050 21 LINES VALVE BLOCK AFE SYSTEM PROPORTIONAL VALVES GLASS LEVEL

### OUR HERITAGE

Since 1906, BDF Industries' principal activity has been the development and integration of complex technologies to aid industrial progress.

The **worldwide market** depends on BDF's multitasking, multicultural, and multi-expertise strategy, which has evolved and shaped itself over the years in response to market demands.

BDF provides the chance to join a top-notch technological group ready to compete with present and future business opportunities in terms of **competitiveness, performances, and reliability of products** and processes thanks to its natural collaborative instinct and the professionalism shown in more than **115 years of tradition**.

# The future we see through.

OUR MISSION

Manufacturer of cutting-edge machinery, BDF Industries is a group where innovation and performance converge in a never-ending quest for excellence.

### MELTING



For the design and supply of furnaces, working ends, and forehearths, BDF Industries Melting's product portfolio comprises the whole glass melting and conditioning technologies. Additionally, **relevant equipment** including oil and gas burners, firing system air, exhaust reverse valves, batch chargers, and stirrers are part of the product line.

BDF Industries furnaces are engineered with an **high level of customization**, focusing in particular on energy efficiency and environmental impacts. BDF Industries is able to offer a wide range in **design, manufacture, and supply** of different furnace types for production of containers, tableware, lighting ware, and technical glassware due to a long history of experience combined with a team of skilled people who work together in a synergistic way..

### FORMING



The glass container Forming product line of BDF Industries is the company's historical primary activity. BDF Industries can supply a wide range of **machines with a high level of production flexibility** to satisfy the needs of its customers.

With more than 65 years of experience in glass forming field, BDF Industries can offer a complete range of IS machine including gob forming and delivery, ware handling, container and variable equipment. The glass forming machineries are **fully designed and assembled** in house at BDF Industries **in Italy**, which has relevant knowledge of production process with the most important glass manufacturers in the world (e.g. strong credentials for forming business in O-I, Saverglass, Sisecam, Vetropack, Vitro...).

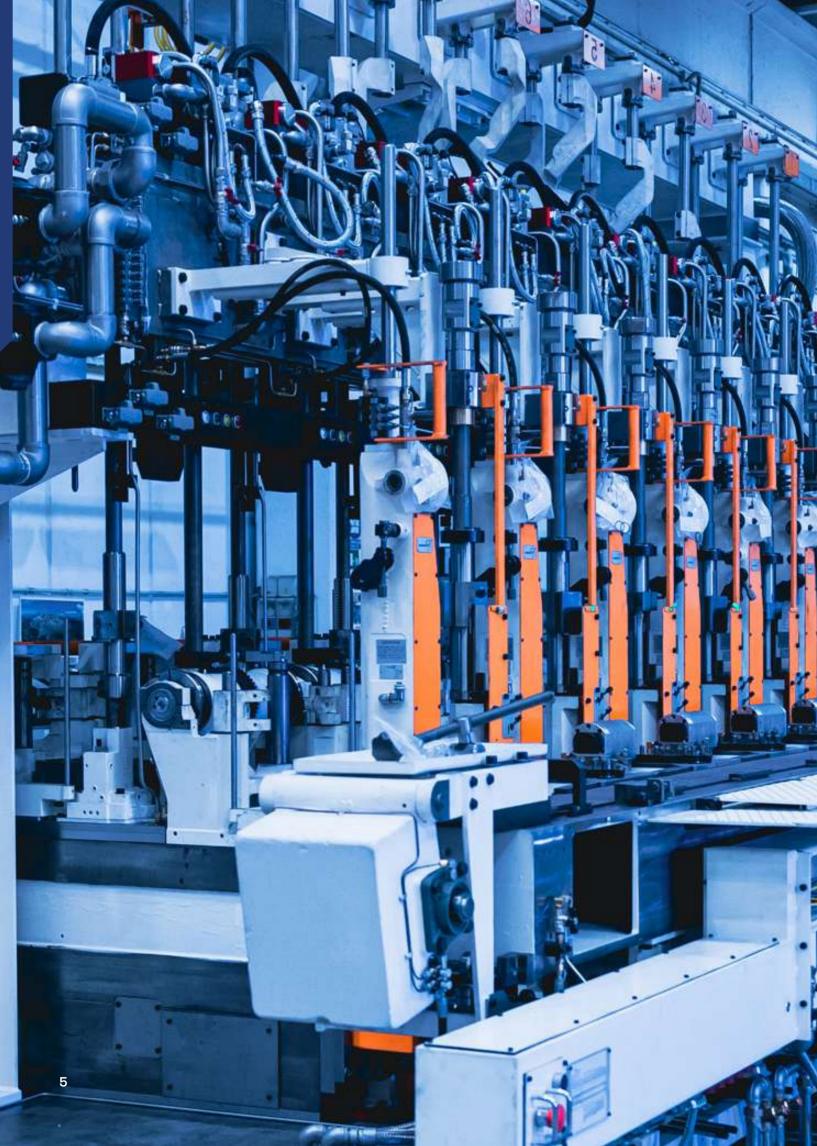
### SERVICE



BDF Industries has a Service division dedicated to provide a comprehensive range of **high-quality service solutions** to our clients from a single source. From glass melting to forming, filtering, energy facilities, and automation, our services serve the whole product value chain.

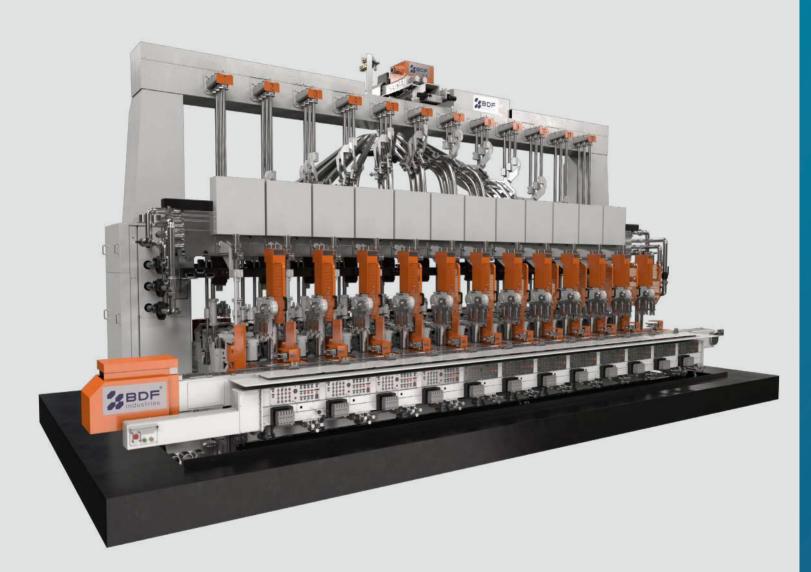
The service product line includes installation & startup, upgrades of mechanical equipment and automation, technical assistance for repairing and overhauling, training, performance evaluation & long term service agreement, integrated maintenance management & diagnostic solutions and systems, spare parts.

The contents of service are the following:


- Supply local qualified supervisors
- Supply of certified end/or upgraded OEM (Original Equipment Manufacturer) spare parts for all maintenance operations
- Performance of all equipment maintenance
- Repairs using state-of-the-art technology
- Optimization of Spare Parts inventory
- On the job Training of local maintenance and operation personel.

The BDF Industries Learning Center in Italy, as well as strategically situated Service Centers, provide a comprehensive range of technical training. Our technical courses are taught by field-tested experts who combine theoretical knowledge with practical expertise. **IS Machine** 

# Glass Forming Machine


Innovation, technology, and versatility make the BDF IS Machines the ideal solutions for high productivity, improved world surroundings, and considerable energy savings.

The BDF machines are particularly designed for being functional in all their mechanical components (gob delivery, servo, and pneumatic mechanism, molds cooling, easy mounting variable equipments, special process apparatus, wares hanling) and also in electronic control systems (integrated and stand-alone).



## IS ANGULAR ADV 1050-8050

6-8-10-12 SECTIONS AND TANDEM IS 4 ¼": SG-DG-TG 3"-TG 3 ½" IS 5" S: SG-DG-TG 85MM IS 5 ½": SG-DG IS 6 ¼": SG-DG-TG 4 ¼"



### **STANDARD MACHINE CONFIGURATION**

### FEEDER

- Servo plunger
- Gear-type revolving tube mechanism
- Servo Arcuate shear
- Shear spray system

### **DELIVERY SYSTEM**

- Servo gob distributor SGD 330
- Easy Aligning Delivery System (EADS)

### MACHINE

- Angular opening close mechanism
- 21 lines valve block
- Blank and Blow side Stack-cooling
- Blow side vertical cooling
- Roller bearing Neck Ring mechanism
- Series 300 2-Line Mechanism: Baffle - Funnel - Blow head
- Servo Invert
- Servo Takeout

### **WARE HANDLING**

- Step pusher
- Conveyor
- Transfer wheel TRW 1305

### TIMING SYSTEM

ADV 8050

### PROCESS

- Blow & Blow
- Press & Blow
- Narrow Neck Press and Blow (NNPB)

### **OPTIONAL**

### FEEDER

- Dual motor Servo Arcuate Shear
- Servo parallel Shear mechanism
- Servo plunger with indipendent modules
- Fixed Drop Guide
- Feeder Flowtech

### **DELIVERY SYSTEM**

- Multi Direct Drive servo gob distributor X2/X3/X4
- Multi Direct Drive servo gob distributor SG-DG
- Costant Angle 30° Delivery system (on 8B10-10-12 section machine)

### MACHINE

- Blank side axial cooling (on IS 5" 1/2 6" 1/4)
- Blow side axial cooling (on IS  $5^{"1/2} 6^{"1/4}$ )
- Servo Take Out with motor from the top
- Servo Baffle
- Servo Blowhead
- Air-spring funnel
- Proportional valves:
- Plunger up Counter Blow Final Blow
- IWS system
- PMPC
- Black Box
- Thermocontroller
- CWD

### WARE HANDLING

- AP Pusher mechanism (dual motor)
- Air jet pusher
- Transfer wheel TRW HSS double chain
- Transfer wheel TRW-SA-1305 (Small Article)

# IS PARALLEL ADV 8050



### **STANDARD MACHINE CONFIGURATION**

### FEEDER

- Servo plunger
- Gear-type revolving tube mechanism
- Servo Arcuate Shear
- Shear spray system

### **DELIVERY SYSTEM**

- Servo gob distributor SGD 330
- Easy Aligning Delivery System (EADS)

### MACHINE

- Parallel opening close mechanism
- 21 lines valve block
- Blank side axial cooling
- Blow side axial cooling
- Blow side vacuum system
- Series 300 2-line mechanisms: Baffle Pantograph - Funnel - Blow head
- Servo Invert
- Servo Take Out with motor from the top

### WARE HANDLING

- Step pusher
- Conveyor
- Transfer wheel TRW 1305

### TIMING SYSTEM

• ADV 8050

### PROCESS

- Blow & Blow
- Press & Blow
- Narrow Neck Press and Blow (NNPB)

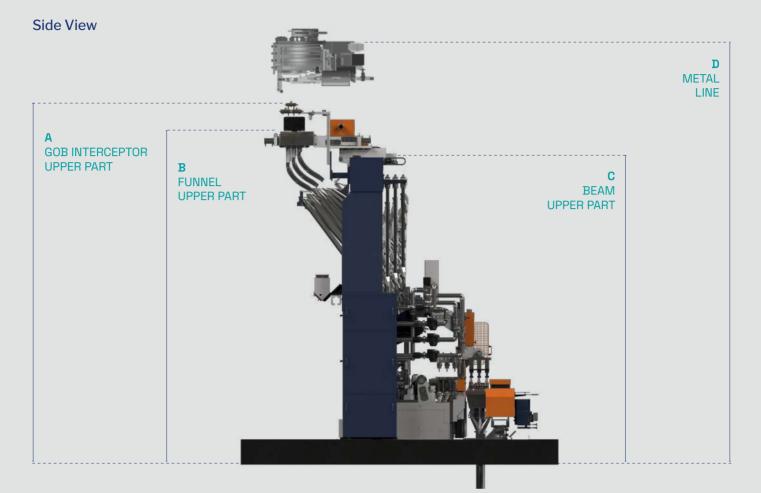
### **OPTIONAL**

### **FEEDER**

- Dual motor Servo Arcuate Shear
- Servo parallel Shear Mechanism
- Servo plunger with indipendent modules
- Fixed Drop Guide
- Feeder Flowtech

### **DELIVERY SYSTEM**

- Multi Direct Drive servo gob distributor X2/X3/X4
- Multi Direct Drive servo gob distributor SG-DG
- Costant Angle 30° Delivery system (on 8B10-10-12 section machine)


### MACHINE

- Proportional valves:
   Plunger up Counter Blow Final Blow
- Servo Baffle
- Servo Blowhead
- IWS System
- PMPC
- Black Box
- Thermocontroller
- CWD

### WARE HANDLING

- AP Pusher mechanism (dual motor)
- Air jet pusher
- Transfer wheel TRW HSS double chain

# **Technical Details**



# Top View E REQUIRED SPACE LENGHT (mm) F LOADING POINTS OF BED LENGHT (mm) C.L. ORIFICE TO C.L. CONVEYOR (mm) H LOADING POINTS OF BED WIDTH (mm)

I MAX REQUIRED SPACE WIDTH (mm)

### **MACHINE TYPE**

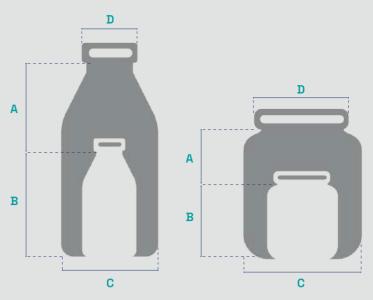
|                       |    |                                   | ANGULAR  | M.O.C.             |                   |
|-----------------------|----|-----------------------------------|----------|--------------------|-------------------|
| IS-4" <sup>1</sup> /4 | SG | DG 4" <sup>1</sup> / <sub>4</sub> | (108 mm) | TG 3" (76 mm)      | TG 3" 1/8 (80 mm) |
| IS-5"                 | SG | DG 5"                             | (127 mm) | TG 85 mm           |                   |
| IS-5" <sup>1</sup> /2 | SG | DG 5" 1/2                         | (140 mm) |                    |                   |
| IS-6" <sup>1</sup> /4 | SG | DG 6" <sup>1</sup> / <sub>4</sub> | (159 mm) | TG 4" 1/4 (108 mm) |                   |

|                                     |         | PARALLEL M.O.C | ).               |
|-------------------------------------|---------|----------------|------------------|
| IS-P 6" <sup>1</sup> / <sub>4</sub> | DG 6" ¼ | (159 mm)       | TG 4" ¼ (108 mm) |

### **MACHINES DIMENSIONS**

|                                       | ANGULAR M.O.C. |                  |       |       |       |         |         |         |       |       |         |       |  |  |  |
|---------------------------------------|----------------|------------------|-------|-------|-------|---------|---------|---------|-------|-------|---------|-------|--|--|--|
| SIDE VIEW<br>(easy aligning version)  |                |                  |       |       |       |         |         |         |       |       |         |       |  |  |  |
| DELIVERY                              |                | EASY ALIGNING    |       |       |       |         |         |         |       |       |         |       |  |  |  |
| MACHINES                              |                | <b>IS-4</b> " ¼  |       |       | IS-5" |         |         | IS-5" ½ | !     |       | IS-6" ¼ | i     |  |  |  |
| SECTIONS                              | 6-8            | 10               | 12    | 6-8   | 10    | 12      | 6-8     | 10      | 12    | 6-8   | 10      | 12    |  |  |  |
| A GOB INTERCEPTOR<br>UPPER PART (mm)  | 3.666          | 3.975            | 4.380 | 3.705 | 3.975 | 4.380   | 3.765   | 4.065   | 4.455 | 3.765 | 4.065   | 4.455 |  |  |  |
| <b>B</b> FUNNEL<br>UPPER PART (mm)    | 3.470          | 3.780            | 4.180 | 3.505 | 3.780 | 4.180   | 3.565   | 3.865   | 4.255 | 3.565 | 3.865   | 4.255 |  |  |  |
| C BEAM UPPER PART (mm)                | 3.065          | 3.375            | 3.775 | 3.100 | 3.375 | 3.775   | 3.160   | 3.460   | 3.850 | 3.160 | 3.460   | 3.850 |  |  |  |
| D METAL LINE (mm)                     | 4.800          | 5.000            | 5.400 | 4.800 | 5.000 | 5.400   | 4.800   | 5.200   | 5.600 | 4.800 | 5.200   | 5.600 |  |  |  |
| SIDE VIEW<br>(constant angle version) |                |                  |       |       |       |         |         |         |       |       |         |       |  |  |  |
| DELIVERY                              |                |                  |       |       | (     | CONSTAN | NT ANGL | .E      |       |       |         |       |  |  |  |
| MACHINES                              |                | <b>IS-4</b> "1⁄4 |       |       | IS-5" |         |         | IS-5" ½ | :     |       | IS-6" ¼ | i     |  |  |  |
| SECTIONS                              | 8B10           | 10               | 12    | 8B10  | 10    | 12      | 8B10    | 10      | 12    | 8B10  | 10      | 12    |  |  |  |
| A GOB INTERCEPTOR<br>UPPER PART (mm)  | 4.390          | 4.390            | 4.650 | 4.390 | 4.390 | 4.650   | 4.470   | 4.470   | 4.720 | 4.470 | 4.470   | 4.720 |  |  |  |
| <b>B</b> FUNNEL<br>UPPER PART (mm)    | 4.205          | 4.205            | 4.460 | 4.205 | 4.205 | 4.460   | 4.270   | 4.270   | 4.520 | 4.270 | 4.270   | 4.520 |  |  |  |
| C BEAM UPPER PART (mm)                | 3.805          | 3.805            | 4.055 | 3.805 | 3.805 | 4.055   | 3.865   | 3.865   | 4.120 | 3.865 | 3.865   | 4.120 |  |  |  |
| D METAL LINE (mm)                     | 5.500          | 5.500            | 5.800 | 5.500 | 5.500 | 5.800   | 5.600   | 5.600   | 5.900 | 5.600 | 5.600   | 5.900 |  |  |  |

### **TOP VIEW**


| MACHINES                                         | IS-4" ¼ |       |       |       | IS-5" |       |       |       |       | IS-5  | 5" <sup>1</sup> ⁄2 |       | IS-6" ¼ |       |       |
|--------------------------------------------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------------------|-------|---------|-------|-------|
| SECTIONS                                         | 6       | 8     | 10    | 12    | 6     | 8     | 10    | 12    | 6     | 8     | 10                 | 12    | 8       | 10    | 12    |
| <b>E</b> REQUIRED SPACE<br>LENGHT (mm)           | 5.180   | 6.250 | 7.315 | 8.380 | 5.180 | 6.250 | 7.315 | 8.380 | 5.180 | 6.250 | 7.315              | 8.380 | 6.250   | 7.315 | 8.380 |
| <b>F</b> LOADING POINTS<br>OF BED LENGHT (mm)    | 4.480   | 5.547 | 6.614 | 7.680 | 4.480 | 5.547 | 6.615 | 7.680 | 4.480 | 5.550 | 6.615              | 7.680 | 5.550   | 6.615 | 7.680 |
| <b>G</b> C. L. ORIFICE TO<br>C. L. CONVEYOR (mm) | 2.397   | 2.397 | 2.397 | 2.657 | 2.417 | 2.417 | 2.417 | 2.786 | 2.565 | 2.565 | 2.565              | 2.825 | 2.621   | 2.621 | 2.881 |
| H LOADING POINTS<br>OF BED WIDTH (mm)            | 1.465   | 1.465 | 1.465 | 1.465 | 1.465 | 1.465 | 1.465 | 1.465 | 1.465 | 1.465 | 1.465              | 1.465 | 1.465   | 1.465 | 1.465 |
| I MAX REQUIRED<br>SPACE (mm)                     | 5.300   | 5.300 | 5.300 | 5.300 | 5.300 | 5.300 | 5.300 | 5.300 | 5.300 | 5.300 | 5.300              | 5.300 | 5.300   | 5.300 | 5.300 |

### PARALLEL M.O.C.

| SIDE VIEW                            |       |                                     |       |                |       |       |  |  |  |  |  |  |  |
|--------------------------------------|-------|-------------------------------------|-------|----------------|-------|-------|--|--|--|--|--|--|--|
| DELIVERY                             |       | EASY ALIGNING                       |       | CONSTANT ANGLE |       |       |  |  |  |  |  |  |  |
| MACHINES                             |       | IS-P 6" <sup>1</sup> ⁄ <sub>4</sub> |       |                |       |       |  |  |  |  |  |  |  |
| SECTIONS                             | 8     | 10                                  | 12    | 8              | 10    | 12    |  |  |  |  |  |  |  |
| A GOB INTERCEPTOR<br>UPPER PART (mm) | 3.762 | 4.062                               | 4.452 | 4.470          | 4.470 | 4.720 |  |  |  |  |  |  |  |
| <b>B</b> FUNNEL<br>UPPER PART (mm)   | 3.565 | 3.865                               | 4.265 | 4.270          | 4.720 | 4.520 |  |  |  |  |  |  |  |
| C BEAM UPPER PART (mm)               | 3.160 | 3.460                               | 3.850 | 3.865          | 3.865 | 4.120 |  |  |  |  |  |  |  |
| D METAL LINE (mm)                    | 4.800 | 5.200                               | 5.600 | 5.600          | 5.600 | 5.900 |  |  |  |  |  |  |  |

### **TOP VIEW**

| MACHINES                                      |       | <b>IS-P 6</b> " <sup>1</sup> / <sub>4</sub> |       |
|-----------------------------------------------|-------|---------------------------------------------|-------|
| SECTIONS                                      | 8     | 10                                          | 12    |
| <b>E</b> REQUIRED SPACE<br>LENGHT (mm)        | 6.247 | 7.314                                       | 8.380 |
| <b>F</b> LOADING POINTS OF BED<br>LENGHT (mm) | 5.547 | 6.614                                       | 7.680 |
| <b>G</b> C. L. OREFICE TO C. L. CONVEYOR (mm) | 2.621 | 2.621                                       | 2.881 |
| H LOADING POINTS OF BED<br>WIDTH (mm)         | 1.465 | 1.465                                       | 1.465 |
| <b>D</b> MAX REQUIRED SPACE<br>WIDTH (mm)     | 5.300 | 5.300                                       | 5.300 |



### **PRODUCTION LIMIT TABLE**

|                                                             |        |      |               | ANGU        | LAR M.             | D.C.  |       |        |      |                       |     |          |
|-------------------------------------------------------------|--------|------|---------------|-------------|--------------------|-------|-------|--------|------|-----------------------|-----|----------|
| MACHINES                                                    |        | IS 4 | <b>."</b> 1⁄4 |             |                    | IS 5" |       |        | " ¼2 | IS 6" <sup>1</sup> /4 |     |          |
| CONFIGURATION                                               | SG     | DG   | TG 3"         | TG<br>3"¹⁄8 | SG                 | DG    | TG 85 | SG     | DG   | SG                    | DG  | TG 4"1⁄4 |
| BLOW-BLOW                                                   |        |      |               |             |                    |       |       |        |      |                       |     |          |
| MAX HEIGHT UNDER<br>FINISH (mm) (A)                         | 360(1) | 305  | 276           | 152         | 360(1)             | 324   | 245   | 380(2) | 347  | 380(2)                | 347 | 287      |
| MIN HEIGHT UNDER<br>FINISH (mm) (B)                         | 25     | 32   | 59            | 25          | 25                 | 56    | 55    | 54     | 68   | 54                    | 68  | 38       |
| MAX BODY DIAMETER<br>(mm) WITH STACK-<br>COOLING (C)        | 178    | 90   | 52            | 60          | 178                | 102   | 62    | 178    | 111  | 178                   | 130 | 90       |
| MAX BODY DIAMETER<br>(mm) WITH VERTICAL<br>BLOW COOLING (C) | 156    | 76   | 51            | 50          | 156                | 95    | 60    | 156    | 102  | 156                   | 121 | 76       |
| MAX FINISH DIAMETER<br>(mm) (D)                             | 48     | 48   | 30            | 35          | 48                 | 48    | 30    | 48     | 48   | 48                    | 48  | 48       |
| PRESS-BLOW                                                  |        |      |               |             |                    |       |       |        |      |                       |     |          |
| MAX HEIGHT UNDER<br>FINISH (mm) (A)                         | 285(1) | 282  | 258           | 152         | 285 <sup>(1)</sup> | 287   | 213   | 326(2) | 305  | 326(1)                | 305 | 268      |
| MIN HEIGHT UNDER<br>FINISH (mm) (B)                         | 22     | 32   | 47            | 45          | 22                 | 48    | 50    | 62     | 58   | 62                    | 58  | 38       |
| MAX BODY DIAMETER<br>(mm) WITH STACK-<br>COOLING (C)        | 178    | 90   | 52            | 60          | 178                | 102   | 62    | 178    | 111  | 178                   | 130 | 90       |
| MAX BODY DIAMETER<br>(mm) WITH VERTICAL<br>BLOW COOLING (C) | 156    | 76   | 51            | 50          | 156                | 95    | 60    | 156    | 102  | 156                   | 121 | 76       |
| MAX FINISH DIAMETER<br>(mm) (D)                             | 120    | 83   | 38            | 45          | 120                | 90    | 55    | 120    | 90   | 120                   | 105 | 70       |

Ware ranges assume the use of standard mold equipment. Absolute minimum or maximum value must be determined individually if these ranges are to be exceeded.

NOTES:

 $^{(\mathrm{l})}$  With blow mold stack cooling using Non-Vertical Blow Cooling bottom plates.

 $^{\rm (2)}$  With blow mold stack cooling, with or w/o Non-Vertical blow cooling bottom plates.

| MACHINES                                                    | <b>IS 4"</b> <sup>1</sup> ⁄4 |       |          | IS  | 5"    | <b>IS 5</b> " ½ | ISE | <b>5"</b> 1⁄4 |
|-------------------------------------------------------------|------------------------------|-------|----------|-----|-------|-----------------|-----|---------------|
| CONFIGURATION                                               | DG                           | TG 3" | TG 3"1⁄8 | DG  | TG 85 | DG              | DG  | TG 4"1⁄4      |
| NNPB                                                        |                              |       |          |     |       |                 |     |               |
| MAX HEIGHT UNDER<br>FINISH (mm) (A)                         | 282                          | 258   | 141      | 282 | 213   | 305             | 305 | 268           |
| MIN HEIGHT UNDER<br>FINISH (mm) (B)                         | 32                           | 47    | 45       | 48  | 50    | 58              | 58  | 38            |
| MAX BODY DIAMETER<br>(mm) WITH STACK<br>COOLING (C)         | 90                           | 52    | 60       | 102 | 62    | 111             | 130 | 90            |
| MAX BODY DIAMETER<br>(mm) WITH VERTICAL<br>BLOW COOLING (C) | 76                           | 51    | 50       | 95  | 60    | 102             | 121 | 76            |
| MAX FINISH DIAMETER<br>(mm) (D)                             | 38                           | 38    | 38       | 38  | 38    | 38              | 38  | 38            |

Ware ranges assume the use of standard mold equipment. Absolute minimum or maximum value must be determined individually if these ranges are to be exceeded.

NOTES: <sup>(1)</sup> With blow mold stack cooling using Non-Vertical Blow Cooling bottom plates.

 $^{\rm (2)}$  With blow mold stack cooling, with or w/o Non-Vertical blow cooling bottom plates.

|                                                          | PARALLEL M.O.C.                |                                |
|----------------------------------------------------------|--------------------------------|--------------------------------|
| MACHINES                                                 | IS-P                           | <b>6"</b> <sup>1</sup> /4      |
| CONFIGURATION                                            | DG 6" <sup>1</sup> ⁄4 (159 mm) | TG 4" <sup>1</sup> ⁄4 (108 mm) |
| BLOW-BLOW                                                |                                |                                |
| MAX HEIGHT UNDER FINISH (mm) (A)                         | 345                            | 308                            |
| MIN HEIGHT UNDER FINISH (mm) (B)                         | 98                             | 91                             |
| MAX BODY DIAMETER (mm) WITH STACK-COOLING (C)            | N/A                            | N/A                            |
| MAX BODY DIAMETER (mm) WITH VERTICAL<br>BLOW COOLING (C) | 121                            | 76                             |
| MAX FINISH DIAMETER (mm) (D)                             | 48                             | 48                             |
| PRESS-BLOW                                               |                                |                                |
| MAX HEIGHT UNDER FINISH (mm) (A)                         | 299                            | 289                            |
| MIN HEIGHT UNDER FINISH (mm) (B)                         | 78                             | 78                             |
| MAX BODY DIAMETER (mm) WITH WITH STACK-COOLING (C)       | N/A                            | N/A                            |
| MAX BODY DIAMETER (mm) WITH VERTICAL<br>BLOW COOLING (C) | 121                            | 76                             |
| MAX FINISH DIAMETER (mm) (D)                             | 105                            | 70                             |
| NNPB                                                     |                                |                                |
| MAX HEIGHT UNDER FINISH (mm) (A)                         | 299                            | 289                            |
| MIN HEIGHT UNDER FINISH (mm) (B)                         | 78                             | 78                             |
| MAX BODY DIAMETER (mm) WITH<br>WITH STACK-COOLING (C)    | N/A                            | N/A                            |
| MAX BODY DIAMETER (mm) WITH VERTICAL<br>BLOW COOLING (C) | 120                            | 76                             |
| MAX FINISH DIAMETER (mm) (D)                             | 38                             | 38                             |

**IS Machine** 

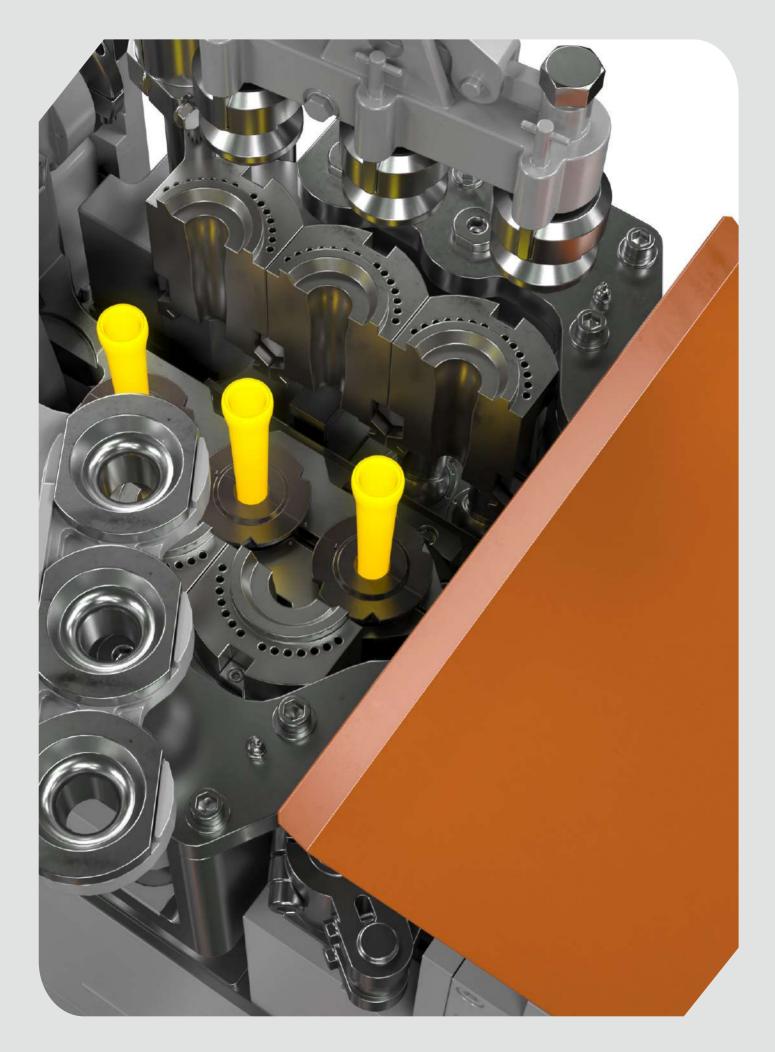
### STANDARD SERVICE REQUIREMENT

|                            | ANGULAR M.O.C. |              |             |              |             |              |             |              |                                   |              |             |              |             |              |  |
|----------------------------|----------------|--------------|-------------|--------------|-------------|--------------|-------------|--------------|-----------------------------------|--------------|-------------|--------------|-------------|--------------|--|
| MACHINES                   |                |              |             |              | IS-4" ¼     | – IS-5"      |             |              | <b>IS-5</b> " ½ – <b>IS-6</b> " ¼ |              |             |              |             |              |  |
|                            | PRESSURE 8     |              |             | 8            | 10          | )            | 12          | 2            | 8                                 |              | 10          |              | 12          | 2            |  |
|                            | P.S.I.         | kg/<br>cm²   | ft³/<br>min | Nm³/<br>min  | ft³/<br>min | Nm³/<br>min  | ft³/<br>min | Nm³/<br>min  | ft³/<br>min                       | Nm³/<br>min  | ft³/<br>min | Nm³/<br>min  | ft³/<br>min | Nm³/<br>min  |  |
| L.P. COMPRES-<br>SED AIR   | 34,8           | 2,4          | 282         | 8            | 353         | 10           | 424         | 12           | 311                               | 8,8          | 388         | 11           | 466         | 13,2         |  |
| H.P. COMPRES-<br>SED AIR   | 50,75          | 3,5          | 847         | 24           | 1.059       | 30           | 1.271       | 36           | 1.073                             | 30,4         | 1.342       | 38           | 1.610       | 45,6         |  |
| P&B - PLUNGER<br>COOLING*  | 50,75          | 3,5          | 282         | 8            | 353         | 10           | 424         | 12           | 339                               | 9,6          | 424         | 12           | 508         | 14,4         |  |
| NNPB - PLUNGER<br>COOLING* | 87             | 6            | 282         | 8            | 353         | 10           | 424         | 12           | 339                               | 9,6          | 424         | 12           | 508         | 14,4         |  |
| VACUUM BLOW<br>MOLD        | "25"Hg         | 635mm<br>Hg  | 226         | 6,4          | 282         | 8            | 339         | 9,6          | 226                               | 6,4          | 282         | 8            | 339         | 9,6          |  |
| VACUUM BLANK<br>SIDE       | "25"Hg         | 635mm<br>Hg  | 113         | 3,2          | 141         | 4            | 169         | 4,8          | 113                               | 3,2          | 141         | 4            | 169         | 4,8          |  |
| **MACHINE<br>COOLING AIR** | "49" WC        | 1250mm<br>WC | 18.361      | 520          | 22.952      | 650          | 27.542      | 780          | 22.598                            | 640          | 28.248      | 800          | 33.898      | 960          |  |
| CONVEYOR<br>COOLING AIR    | "26"WC         | 650mm<br>WC  | 4.237       | 120          | 5.297       | 150          | 6.356       | 180          | 4.237                             | 120          | 5.297       | 150          | 6.3566      | 180          |  |
| COOLING WATER              | 30             | 2            |             | 15 l/<br>min |             | 15 l/<br>min |             | 15 l/<br>min |                                   | 15 l/<br>min |             | 15 l/<br>min |             | 15 l/<br>min |  |

### PARALLEL M.O.C.

| MACHINES                   |        |                    | DG 6"¼ - TG 4"¼                           |          |                      |          |         |          |  |  |  |
|----------------------------|--------|--------------------|-------------------------------------------|----------|----------------------|----------|---------|----------|--|--|--|
|                            | PRES   | SURE               | :                                         | 8        | 1                    | 0        | 12      |          |  |  |  |
|                            | P.S.I. | kg/cm <sup>2</sup> | ft <sup>3</sup> /min Nm <sup>3</sup> /min |          | ft <sup>3</sup> /min | Nm³/min  | ft³/min | Nm³/min  |  |  |  |
| L.P. COMPRESSED<br>AIR     | 34,8   | 2,4                | 311                                       | 8,8      | 388                  | 11       | 466     | 13,2     |  |  |  |
| H.P. COMPRESSED<br>AIR     | 50,75  | 3,5                | 1.073                                     | 30,4     | 1.342                | 38       | 1.610   | 45,6     |  |  |  |
| P&B - PLUNGER<br>COOLING*  | 50,75  | 3,5                | 339                                       | 9,6      | 424                  | 12       | 508     | 14,4     |  |  |  |
| NNPB - PLUNGER<br>COOLING* | 87     | 6                  | 339                                       | 9,6      | 424                  | 12       | 508     | 14,4     |  |  |  |
| VACUUM BLOW<br>MOLD        | 25*Hg  | 635mm<br>Hg        | 226                                       | 6,4      | 282                  | 8        | 339     | 9,6      |  |  |  |
| VACUUM BLANK<br>SIDE       | 25*Hg  | 635mm<br>Hg        | 113                                       | 3,2      | 141                  | 4        | 169     | 4,8      |  |  |  |
| MACHINE<br>COOLING AIR     | 55* WC | 1400mm<br>WC       | 19.209                                    | 544      | 24.011               | 680      | 28.813  | 816      |  |  |  |
| CONVEYOR<br>COOLING AIR**  | 26*WC  | 650mm WC           | 4.237                                     | 120      | 5.297                | 150      | 6.356   | 180      |  |  |  |
| COOLING WATER              | 30     | 2,1                |                                           | 15 l/min |                      | 15 l/min |         | 15 l/min |  |  |  |

For PB-NNPB plunger cooling pressures above 3.15 Kg/cm2 (if required by the customer) \*\*


Valure referred to Stack Cooling blank side and Vertiflow blow side \*\*\* Valure referred to Axial Cooling blank side and Axial Cooling or Vertiflow blow side

Quantities specifed are free air (21°C-70°F and 1 Kg/cm2-14.7 p.s.i.) . . The operating air supply must be clean and dry (it is required the

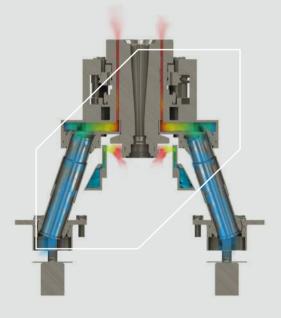
installation of drying and flter system before the piping connection to the machine with an effciency of 98% and a nominal retention of 4  $\div$  10  $\mu)$ 

Maximum temperature of compressed air supply to the machine = 80°C

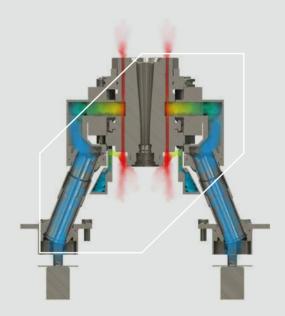
Minimum temperature of compressed air supply to the solenoid value block = 10°C  $\cdot$  Pilot air (Value Block) 0.5 m3/min of free air at 21°C (clean, oil and water free)  $\cdot$  Dew point of compressed air: -5  $\div$  -2 °C Water hardness 100 parts CaCO3 per 1,000,000 parts of water (P.P.M.)



# **Mould Cooling**


# IS ANGULAR AXIAL COOLING SYSTEM ON IS DG $5"\frac{1}{2}$ - IS DG $6"\frac{1}{4}$ TG $4"\frac{1}{4}$

•


Improved cooling efficiency and thermal homogeneity by maintaining standard moulds and equipment:

- Use of standard moulds designed for stack-cooling (radial)
- Use of standard mould holders, arms, plates, or inserts
- Dual on-off valve for blank cooling and neck-ring cooling (blank side)
- Neck-ring cooling design with standard nozzles and spacers (blank side)
- Telescopic tube with quick self centering clamping system

### Mould Cooling

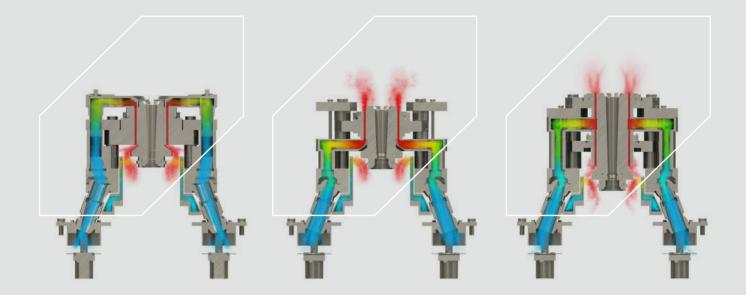


### Mould Cooling



### DOWN-UP BLANK AXIAL COOLING

- Dedicated plenum chamber shaped according mould's diameter and height
- One cooling air flow direction: from bottom to top


### BLANK AND BLOW BIDIRECTIONAL AXIAL COOLING

- Dedicated plenum chamber shaped according mould's diameter and height
- Two separated cooling air flows (upwards and downwards) with independent air volume optimization
- Available for blank and blow side

### IS-P DG 6" 1/4 - TG 4" 1/4 PARALLEL M.O.C. AXIAL COOLING SYSTEM

Improved cooling efficiency and thermal homogeneity

- Indipendent valve for blank cooling and neck-ring cooling (blank side)
- Double telescopic tube with a quick self centering clamping system



### BLANK TOP-DOWN AXIAL COOLING

- Dedicated plenum chamber shaped according to mould's diameter and height
- One cooling airflow direction: from top to bottom

### BLANK DOWN-UP AXIAL COOLING

- Dedicated plenum chamber shaped according to mould's diameter and height
   One cooling airflow direction:
  - One cooling airflow direction: from bottom to top

### BLANK AND BLOW BIDIRECTIONAL AXIAL COOLING

•

- Dedicated plenum chamber shaped according to mould's diameter and height
- Two separated cooling airflow (upwards and downwards) with independent air volume optimization

IS Machine

Timing Systems

# ADV SERIES E-SAVE SYSTEM

- Complete **integrated control system** for control of the entire machine operation from stirrer to ware handling
- Real-time telediagnostic
- Automatic set up of feeder mechanism, gob distributor mechanism, machine, transport line, articles rejected according • to the production changes
- Open system with **field bus architecture**
- Modular machine and industrial standard for Hw and Sw,
  with centralised, decentralised, and
  with distributed intelligence
  Full integration of BDF stand-alone systems in 3rd part-timer



### ADV 1050

- User friendly
- Low-cost basic functions
- Possible Servo Feeder Control
- From 4 up to 12 sect,
- Single gob, Double Gob, Triple Gob.
- Tandem Capability

The Control is made up of One CPU per section controller for every 4 sections, Independent MS and EME-Stop with certified safety relay per each section, and servo motor to fit CE safety requirements, Ethernet communication, and remote access.

Machine Controls for Servo Plunger, Servo Parallel Shear, Servo Gob Distributor; on demand: Servo Tube Height Positioning and Servo Tube Rotation.

Integrated Drive Controller For Mechanical Feeder (when the Servo Feeder is not present), Conveyor, Transfer, and Cross Conveyor.

The Section Controller has 48 outputs, Free assignable events to outputs with attributes for blank or blow side, Integrated electric pusher with step motor, Individual Ware-Rejection with manual or automatic stop, and Special cycles.

### ADV 8050

- Servo Mechanisms Control
- Stand Alone Mechanisms Control
- IWS and PMPC Close loop Control
- Energy Saving With AFE Technology From 6, up to 12 sect
- Single, Double, Triple or Quad Gob
- Tandem Capability

•

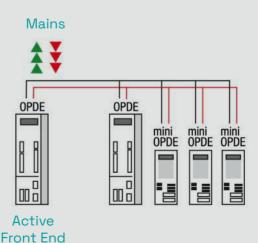
The Control is made up of and individual section controller and 24 VDC power supply (one per section), Independent MS, and E-Stop with robust safety relay per section, and servo motor to meet CE requirements, Ethernet communication, and remote access through the internet or telephone modem.

Machine Integrated controls for Servo Plunger, Servo Tube Height Positioning, Servo Tube Rotation, Servo Arcuate Shear, BDF Three Axis Servo, Servo Parallel Shear, Servo Gob Distributor, BDF-CWD Conveyor Ware Detector Integrated Drive Controller For Mechanical feeder, Conveyor, Transfer, Cross conveyor, BDF Dual Axes servo stacker.

# E-SAVE ENERGY SAVING SYSTEM AFE DC BUS

We consider a complete BDF system equipped with a servo plunger, servo shears, servo gob, servo pusher, servo invert, and servo take-out mechanisms.

Considering the system from a mechanical point of view, there is a continuous energetic inertial change due to the continuous mechanisms of acceleration and deceleration.


We may say that for every movement the energy needed for the acceleration is balanced with the energy needed for the deceleration, more energy to compensate for the mechanical and electronic losses. These losses are functions of the machine's speed. As the servomechanisms movements are not in the same time, the excessed energy is recovered on the CC BUS. The system takes from the main line only the energy to compensate for all the losses (passive energy) that are not compensated by the recovered energy.

The system transfers from the main line to the BUS full power (without cutting) with  $\cos\phi=1$ .

The sinusoidal current is without low harmonic (remaking signal), and the only harmonic signal present is very low and with high frequency, because depends on the modulation frequency (PWM signal). The converter system on the BDF control cabinet is reversible and recovers the mini OPDE Hydro Power AFE Regenerated Power

(kW) Inverter energy on the BUS line.

- Sinusoidal line current with reduction of the harmonic current distorsion THDi
- Compensation for line voltage variations
- Energy saving
- DC BUS Control also with power line voltage fluctuations
- Regenerative capability thus to make power flow in both directions.







BDF Industries Viale dell'Industria, 40 36100 Vicenza, Italy (+39) 0444 286100 bdf@bdf.it bdfindustriesgroup.com